
Received: 6 December 2021 - Accepted: 4 April 2022

DOI: 10.1002/gps.5718

R E S E A R C H A R T I C L E

Establishing an individualized model of conversion from
normal cognition to Alzheimer's disease after 4 years, based
on cognitive, brain morphology and neuropsychiatric
characteristics

Lucas Ronat1,2 | Van‐Tien Hoang1 | Alexandru Hanganu1,3

1Centre de Recherche de l’Institut

Universitaire de Gériatrie de Montréal,

Montréal, Québec, Canada

2Faculté de Médecine, Département de

Médecine, Université de Montréal, Montréal,

Québec, Canada

3Faculté des Arts et des Sciences,

Département de Psychologie, Université de

Montréal, Montréal, Québec, Canada

Correspondence

Lucas Ronat and Alexandru Hanganu, Centre

de Recherche de l’Institut Universitaire de

Gériatrie de Montréal, M6828, 4545 ch.

Queen Mary, Montréal H3W 1W6, Québec,

Canada.

Email: lucas.ronat@umontreal.ca and

alexandru.hanganu@umontreal.ca

Funding information

IUGM Foundation; Fonds de Recherche du

Québec ‐ Santé; Parkinson Canada; Parkinson

Quebec; Faculty of Medicine University of

Montreal; Lemaire Foundation

Abstract

Objectives: The impact of neuropsychiatric symptoms (NPS) on cognitive perfor-

mance has been reported, and this impact was better defined in the aging popula-

tion. Yet the potential of using the impact of NPS on brain and cognitive

performance in a longitudinal setting, as prediction of conversion – have remained

questionable. This study proposes to establish a predictive model of conversion to

Alzheimer's disease (AD) and mild cognitive impairment (MCI) based on current

cognitive performance, NPS and their associations with brain morphology.

Methods: 156 participants with MCI from the Alzheimer's Disease Neuroimaging

Initiative database cognitively stable after a 4‐year follow‐up were compared to 119
MCI participants who converted to AD. Each participant underwent a neuropsy-

chological assessment evaluating verbal memory, language, executive and visuo-

spatial functions, a neuropsychiatric inventory evaluation and a 3 Tesla MRI. The

statistical analyses consisted of 1) baseline comparison between the groups; 2)

analysis of covariance model (controlling demographic parameters including func-

tional abilities) to specify the variables that distinguish the two subgroups and; 3)

used the significant ANCOVA variables to construct a binary logistic regression

model that generates a probability equation to convert to a lower cognitive per-

formance state.

Results: Results showed that MCI who converted to AD in comparison to stable

MCI, exhibited a higher NPS prevalence, a lower cognitive performance and a higher

number of involved brain structures. Functional abilities, memory performance and

the sizes of inferior temporal, hippocampal and amygdala sizes were significant

predictors of MCI to AD conversion. We also report two models of conversion that

can be implemented on an individual basis for calculating the percentage risk of

conversion after 4 years.

Conclusion: These analytical methods might be a good way to anticipate cognitive

and brain declines.

ADNI group is Alzheimer's disease Neuroimaging Initiative.
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Key points

� Low functional abilities are a significant factor of MCI to AD conversion

� Smaller volumes of inferior temporal region, hippocampus and amygdala are characteristic

of MCI to AD conversion

� Neuropsychiatric symptoms seem to play a diminished role in predicting the conversion

from MCI to AD

1 | INTRODUCTION

1.1 | Clinical states of age‐related cognitive decline

Current clinical evaluations of cognitive decline include only two

stages: (a) the mild cognitive impairment (MCI) and (b) dementia (or

major cognitive impairment). These stages are based on cognitive

markers1–3 that are evaluated with comprehensive neuropsycholog-

ical assessments. One of the leading clinical presentations of de-

mentia is the Alzheimer's disease (AD) type.4 An MCI level that would

lead to AD has been characterized by either subjective concern about

a change in cognition, or a lower performance in one or more

cognitive domains in comparison to those expected for the patient's

age and educational background, without significant impairment in

social or occupational functioning.1

On the other hand, in the demented state, cognitive deficits are

sufficiently extensive that the individual is no longer able to carry out

his or her daily life tasks alone or without supervision. These cogni-

tive stages are frequently accompanied by psychological suffering for

participants, relatives and caregivers5,6 as well as psychological and

behavioral disturbances called neuropsychiatric symptoms (NPS).7

1.2 | Neuropsychiatric symptoms in cognitive
decline

Most of NPS are clearly observed in dementia,7 but they also

occur in the MCI stage8 and can be present in cognitively healthy

individuals.9 NPS presence was shown to increase the risk of AD

in MCI.10 Indeed, these NPS are found in the cognitively healthy

(CH) population,9,11,12 and their prevalence increases with the

advancement of clinical stages: it is higher in the MCI population

and even higher in the AD population.11 Also, they may increase

the likelihood of MCI progressing into AD10 and thus increase the

likelihood of developing dementia.8 These include depression,13,14

apathy15 and anxiety,16–18 but the latter is more controversial.19,20

However, the impact of depression on cognitive decline is greater

in MCI than in AD.21

In addition, several studies have looked at longitudinal follow‐
ups of participants and participants with NPS. For example, the

study by Moon et al. (2017) confirms a greater progression from

MCI to AD in participants with depressive symptoms according to

the amyloid status of MCI participants: the study is based on the

analysis of longitudinal ADNI data and shows, in MCI participants

with amyloid‐positive amyloid and depression, a higher rate of AD

conversion than participants without depression.22 In addition,

cognitive decline is accelerated over the 2‐year follow‐up period.

Also based on the ADNI database, Zahodne et al. (2013) studied

the atrophy pathways of MCI subjects with and without depres-

sion and apathy on a longitudinal level. Their results show that

depression is associated with greater baseline entorhinal atrophy

and accelerated anterior cingulate atrophy.23 To our knowledge,

fewer studies have looked at the factors of conversion from

normal cognition to MCI and the course of cognitive decline in

healthy individuals. However, these studies were able to highlight

that healthy individuals with mild behavioral impairment exhibited

greater attentional and working memory decline after 1 year of

follow‐up.24 Also, the presence of NPS, including depression,

apathy, and anxiety, is also associated with faster global and

domain‐specific decline.25,26 In addition, MRI data were also

exploited as predictors of conversion from MCI to AD. Thus, it has

been shown that MCI that convert to AD have reduced volumes in

the medial temporal lobe (hippocampus, amygdala, and entorhinal

cortex), the insular, posterior cingulate, precuneus and orbito-

frontal cortex.27–29 However, these data do not appear to have

been addressed in the conversion from CH to MCI. This shows the

importance of screening for NPS and to more investigate MRI in

CH subjects.

For this study, we hypothesized that (1) participants who convert

to a lower cognitive performance state would exhibit increased

variation in NPS; (2) these variations would be associated with brain

morphology and cognitive performance; and (3) these correlations

can be used to predict the conversion.

The purpose of this work is to propose probabilistic models

for predicting conversion to Alzheimer's disease in participants

with MCI, and conversion to MCI in CH participants. From a

clinical perspective, the construction of models with good psy-

chometric characteristics would allow to estimate, for an indi-

vidual evaluated in a clinical context, an objective probability of

conversion.
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2 | MATERIALS AND METHODS

2.1 | Participants

275 participants with MCI and 185 cognitively healthy participants

(CH) from the ADNI database were extracted. Data used in the

preparation of this article were obtained from the ADNI database

(adni.loni.usc.edu). The ADNI, launched in 2003 and led by Principal

Investigator Michael W. Weiner, MD, has for main objective to un-

derstand the progression of MCI and early AD by combining imaging,

biological and neuropsychological data30,31 (http://www.adni‐info.
org/). Entry criteria for participants with amnestic MCI include a

Mini‐Mental State Examination score of 24–30 and a Memory Box

score of at least 0.5, whereas other details on the ADNI cohort can be

found online. All participants with AD met National Institute of

Neurological and Communication Disorders/Alzheimer's Disease and

Related Disorders Association criteria for probable AD with a Mini‐
Mental State Examination score between 20 and 26, a global Clin-

ical Dementia Rating of 0.5 or 1, a sum‐of‐boxes Clinical Dementia
Rating of 1.0–9.0, and, therefore, are only mildly impaired. Exclusion

criteria at baseline and follow‐up included any serious neurological

disease or neurodegenerative disease other than possible AD, any

history of brain lesions or head trauma, or psychoactive medication

use (including antidepressants, neuroleptics, chronic anxiolytics, or

sedative hypnotics).

Sample size is dependent on participants completing a neuro-

psychiatric examination, a comprehensive neuropsychological

assessment, a 3 Tesla MRI and having a change in diagnosis available

(MCI to AD or CH to MCI). Participants whose change in diagnosis

was remittent (e.g., MCI to CH, AD to CH) were not included nor

were CH participants converting to AD because of their too low

prevalence.

The clinical status was available until 4‐year follow‐up for all

participants. Based on the clinical stage at follow‐up, four groups

were created in order to distinguish participants who converted to a

worse cognitive performance compared to those that maintained

their previous cognitive level. Our groups consisted of: 156 MCI

remained MCI at follow‐up (MCI‐non‐converted), 119 MCI partici-

pants that converted to AD (MCI‐converted), 170 CH both at base-

line and at follow‐up (CH‐non‐converted) and 15 CH that converted

to MCI (CH‐converted) (Table 1). As mentioned above, others

neurological diagnosis or conversions were not considered.

T A B L E 1 Demographic, neuropsychiatric and neuropsychological characteristics for MCI and CH groups (non‐converted and converted)

MCI CH

Non‐converted Converted T/Chi2 P Non‐converted Converted T/Chi2 p

N 156 119 170 15

Demographic (mean/sd)

Age 75.07/7.75 74.54/7.52 0.572 0.568 75.41/4.92 74.00/5.28 1.06 0.291

Education 15.55/3.07 15.93/2.81 −1.060 0.290 16.15/2.81 16.07/2.84 0.114 0.909

Sex (% women) 39.1 35.3 0.418 0.518 48.8 40 0.430 0.512

MMSE 27.51/1.73 26.87/1.67 3.125 0.002 29.12/1.00 28.67/1.50 1.598 0.112

FAQ 2.72/3.83 5.75/5.22 −5.329 0.000 0.06/0.33 0.73/1.71 −1.512 0.153

NPS (%)

Delusion 0 0.8 1.316 0.251 0 0 ‐ ‐

Hallucination 0 0.8 1.316 0.251 0.6 0 0.089 0.766

Agitation 12.8 26.9 8.716 0.003 3.5 0 0.547 0.459

Depression 14.7 21.8 2.327 0.127 4.7 0 0.738 0.390

Anxiety 16.0 21.0 1.127 0.288 3.5 6.7 0.373 0.542

Euphoria 3.2 3.4 0.005 0.942 0 0 ‐ ‐

Apathy 10.9 15.1 1.087 0.297 1.8 0 0.269 0.604

Disinhibition 5.1 9.2 1.778 0.182 0.6 0 0.089 0.766

Irritability 27.6 30.3 0.238 0.625 7.1 6.7 0.003 0.955

AMB 4.5 4.2 0.013 0.909 0.6 0 0.089 0.766

Nighttime behavior 12.2 13.4 0.097 0.755 9.4 20 1.677 0.195

Appetite changes 7.7 15.1 3.838 0.050 0.6 0 0.089 0.766

(Continues)
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2.2 | Data acquisition and processing

Data collection and sharing for this project was funded by the Alz-

heimer's Disease Neuroimaging Initiative (ADNI) (National Institutes

of Health Grant U01 AG024904) and DOD ADNI (Department of

Defense award number W81XWH‐12‐2‐0012).
The neuropsychiatric changes were evaluated using the Neuro-

psychiatric Inventory.7 The inventory consists of the evaluation of

the presence, severity and frequency of 12 neuropsychiatric symp-

toms (NPS): delusions, hallucinations, agitation/aggressiveness,

depression, anxiety, euphoria, apathy, disinhibition, irritability, aber-

rant motor behaviors, nighttime behaviors and appetite changes. We

included the evaluations performed by the participants' relatives and

only the prevalence of each NPS is considered.

Neuropsychological assessment was based on the tests assess-

ing: (1) anterograde verbal memory (Rey Auditory Verbal Learning

Test ‐ RAVLT), (2) focused attention (Trail Making Test A ‐ TMTA), (2)

processing speed (Wechsler Adult Intelligence Scale Code subtest),

(3) mental flexibility (Trail Making Test B ‐ TMTB), (4) visuocon-

structive planning (clock test), (5) working memory (digit span), (6)

semantic lexical evocation (animal and vegetable fluency) and (7) oral

naming (Boston Naming Test ‐ BNT). Moreover, the Mini‐Mental

State Examination score was used as a demographic factor of

global cognitive efficiency.

MRI structural images were processed with FreeSurfer 7.1.1

software, on Linux Centos 7 on ComputeCanada environment, clus-

ter Cedar and managed with our in‐house pipeline (github.com/

alexhanganu/nimb) that allowed automated exclusion of post‐
processed data with errors as well as extraction of statistical data,

diminishing potential human error. Cortical thickness parameter was

extracted based on the Destrieux et al. Atlas (2010) while subcortical

volumes were extracted for all regions as well as sub‐regional based
on the corresponding atlases32; for the thalamus,33 amygdala,34 and

hippocampus.35 The volumes of subcortical structures were cor-

rected with the estimated Total Intracranial Volume (eTIV).36

Also, in order to consider and control the risk of neuropsychiatric

symptoms due to difficulties in performing daily activities, the

Functional Abilities Questionnaire (FAQ) score was compared be-

tween groups and included as a covariate in case of significant dif-

ference between groups.

T A B L E 1 (Continued)

MCI CH

Non‐converted Converted T/Chi2 P Non‐converted Converted T/Chi2 p

Cognitive assess. (Mean/sd)

Clock drawing 4.43/0.76 4.13/1.05 2.781 0.008 4.71/0.59 4.60/0.74 0.650 0.516

Clock copy 4.76/0.49 4.61/0.69 1.924 0.056 4.89/0.35 4.67/0.82 1.043 0.314

RAVLT 1 4.62/1.64 3.76/1.26 4.902 0.000 5.18/1.61 4.73/1.03 1.047 0.296

RAVLT 2 6.10/2.06 5.00/1.48 5.173 0.000 7.72/1.97 6.60/1.18 2.162 0.032

RAVLT 3 7.24/2.32 5.90/1.53 5.781 0.000 9.44/2.32 8.53/2.59 1.429 0.155

RAVLT 4 7.77/2.54 6.27/1.54 6.052 0.000 10.54/2.38 9.33/2.61 1.860 0.065

RAVLT 5 8.47/2.67 6.64/2.00 6.514 0.000 11.18/2.24 10.53/2.62 1.061 0.290

RAVLT 6 4.79/3.58 2.55/2.08 6.511 0.000 8.39/3.44 7.07/2.63 1.456 0.147

RAVLT B 3.96/1.59 3.40/1.32 3.103 0.002 5.05/1.68 4.87/2.80 0.386 0.700

DS forward 8.34/2.06 8.32/1.99 0.083 0.934 8.88/2.02 8.13/1.96 1.378 0.170

DS backward 6.41/2.14 6.10/1.82 1.296 0.196 7.25/2.17 6.27/1.22 1.721 0.087

Animals 16.52/4.68 15.70/4.86 1.419 0.157 20.16/5.56 18.73/5.84 0.948 0.344

Vegetables 11.64/3.38 10.04/3.31 3.922 0.000 14.91/3.70 12.80/3.86 2.114 0.036

TMTA 40.72/17.02 48.76/26.19 −2.912 0.004 35.91/12.97 37.20/12.23 −0.370 0.712

TMTB 110.31/59.47 143.44/78.24 −3.848 0.000 86.12/43.96 91.20/26.92 −0.440 0.661

Symbol digit 39.75/11.00 35.15/10.72 3.473 0.001 46.20/10.34 43.47/6.96 1.003 0.317

BNT 26.17/3.55 25.50/3.90 1.487 0.138 27.88/2.31 27.80/2.18 0.133 0.894

RAVLT Del. 3.90/3.70 1.55/2.30 6.470 0.000 7.73/3.62 6.07/3.67 1.703 0.090

RAVLT tot 10.63/3.32 8.58/3.83 4.736 0.000 12.98/2.44 12.40/2.10 0.886 0.377

Note: Bold values = significant results.

Abbreviations: BNT, Boston Naming Test; DS, Digit Span; FAQ, Functional Abilities Questionnaire; MMSE, MiniMental State Examination; NPS,

Neuropsychiatric Symptoms; RAVLT, Rey Auditory Verbal Learning Test (free recall 1–6, list B and delayed); sd, standard deviation; TMT, Trail Making

Test.
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2.3 | Statistical analysis

The statistical analyses are based on the methodology of Orso et al.

(2020).37 For this study, the data were analyzed using SPSS version

26.0 software. Descriptive analyses verified the similarity of the

groups (MCI‐converted vs. MCI‐non‐converted; CH‐converted vs.

CH‐non‐converted) in terms of age, years of education, MMSE score,

FAQ and sex distribution (respectively mean comparisons by Student

test and contingency Chi2 analysis). Statistical analysis consisted of

three steps. (I) First, the groups were compared based on (i) means of

cognitive performances (Two sample t‐tests), (ii) prevalence of NPS

(Chi2 tests) and (iii) means of neuroimaging structure sizes (Student t‐
tests of cortical thickness and subcortical volumes). (II) Features that

were shown to be significant in the first three comparisons, were

included in the Analysis of Covariance Model with age, sex, years of

education, FAQ and MMSE scores as covariates. (III) Finally, features

that were deemed significant in the ANCOVA model were imputed in

a two binary logistic regression model to generate probability

equations for AD and MCI conversion based on neuropsychiatric,

cognitive and neuroimaging data.

3 | RESULTS

3.1 | Demographical, neuropsychiatric and
neuropsychological differences

At baseline, in comparison to MCI‐non‐converted, the MCI‐
converted group had a lower MMSE and higher FAQ scores, worse

performance on some cognitive tests (clock test, RAVLT immediate

recall A and B, RAVLT delayed recall, semantic lexical evocation for

“vegetables”, TMT A and B, WAIS code) and a significantly higher

prevalence of agitation and appetite changes (Table 1 near here).

On the other hand, the CH‐converted and CH‐non‐converted
groups showed similar results regarding age, years of education,

sex distribution, MMSE and FAQ scores as well as distributions of

neuropsychiatric symptoms. Several significant differences were

depicted in the cognitive performance at baseline, with the CH‐
converted group having a worse performance in comparison to CH‐
non‐converted on RAVLT second recall, digit span backward and

semantic lexical evocation of “vegetables”.

3.2 | Brain morphology differences

Considering the large number of structures compared between the

converted versus non‐converted groups, the results for MCI and CH

are summarized in Tables S1 and S2 respectively. Briefly, the MCI‐
converted group showed multiple significant difference in compari-

son to the MCI‐non‐converted one. Significant changes were depic-

ted in all brain lobes both on the cortical level in gyri and sulci as well

as regarding the volumes of subcortical structures, notably the vol-

umes of hippocampus, amygdala and thalamus subregions (Table S1).

By contrast, the CH‐converted group exhibited smaller frontal

inferior orbital gyrus and suborbital sulcus, cingulate ventral poste-

rior gyrus, temporal pole and temporal middle gyrus thicknesses and

some hippocampal, amygdala and thalamic subregions volumes than

CH‐non‐converted group (Table S2).

3.3 | ANCOVA model

After control for age, sex, years of education, FAQ and MMSE scores

as covariates, ANCOVA showed a significant lower performance in

MCI‐converted for every score of the RAVLT than in MCI‐non‐
converted. Conversion interacted with agitation on the recall of the

B‐list of the RAVLT (non‐converted with agitation perform better

than those without while the opposite trend is present in converted)

(Table S3). By contrast, the CH‐converted group exhibited significa-

tive lower performance on the second recall of the RAVLT and in

semantic lexical evocation of “vegetables” than CH‐non‐converted
(Table S4).

Regarding brain structures, most of the structures (all lobes

[except insula], hippocampi and amygdala) were smaller in MCI‐
converted than in MCI‐non‐converted. Presence of agitation was

featured by greater cortical thicknesses (frontal, parietal, occipital,

temporal) and subcortical volumes (hippocampus and amygdala)

whereas appetite changes were featured by precentral and lingual

thinning and larger hippocampus and amygdala volumes (Table S3).

An interaction effect between conversion and agitation showed a

greater thickness in the MCI‐converted with agitation than in those

without agitation, while the opposite difference is found in the non‐
converted, at the inferior occipital, intraparietal, left parieto‐occipital,
right middle temporal and bilateral precentral levels. The opposite

effect was found in the left subcallosal gyrus. Another interaction

effect between conversion and appetite changes showed thinning in

MCI‐converts with appetite changes compared to those without,

whereas the opposite pattern was found in non‐converted, at the
bilateral superior parietal, precuneus, subparietal, left intraparietal,

right lingual and parieto‐occipital structures (Table S3). In CH‐
converted, the previous structures (Table S2) remained significantly

smaller than in CH‐non‐converted, except for the central lateral and
paratenial thalamic nuclei (Table S4).

3.4 | Prediction of AD from MCI and MCI from CH
based on logistic regression

Binary logistic regression models (Tables 2 and 3 near here) based on

the significant results of the ANCOVA models provided probabilistic

prediction equations for conversion of MCI participants to AD and

CH participants to MCI.

The probability equation for an MCI participant to convert to AD

is sustained by age, the FAQ score, the RAVLT first immediate recall

score, the RAVLT fifth immediate recall score, the right inferior

temporal gyrus thickness, the right molecular layer of the right
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hippocampus body volume, and the left amygdala accessory basal

nucleus volume. The model had a sensitivity of 73.1%, specificity of

83.3% (Table 3) and Yule Q coefficient indicating a very strong link

between the diagnosis and the clinical characteristics.

Then, the probability equation for a CH participant to convert to

MCI is sustained by age, the semantic lexical evocation for “vegeta-

bles” performance, the right subiculum body volume, and the left

medial pulvinar thalamic nucleus volume. The models were charac-

terized by a sensitivity and specificity of 6.7% and 99.4% a (Table 5)

and Yule Q coefficient was 0.85 indicating a very strong link between

the diagnosis and the clinical characteristics (Tables 4 and 5 near

here).

4 | DISCUSSION

Our results show that (1) participants with MCI and CH who maintain

their cognitive performance at the 4 years follow‐up, tend to

exhibited (i) a lower NPS prevalence (for MCI), (ii) a higher cognitive

performance and (iii) a lower number of involved brain structures; (2)

none of the NPS have potential of predicting MCI participants who

might convert in AD over 4 years when considering functional abil-

ities score; (3) from all cognitive performance tests, only poorer

mnesic performances seems to predict MCI who convert to AD over

4 years, and only language performance might predict CH who

convert to MCI over 4 years; (4) brain regions that seem to have the

highest relevance in predicting conversion over 4 years, seem to be

the hippocampus, amygdala, and temporal inferior in the case of MCI

participants, and hippocampus and thalamus in the case of CH

participants.

It was expected that agitation and appetite changes would be

involved in predicting MCI to AD conversion. Indeed, agitation along

with appetite changes first appeared to have a significant higher

prevalence in the MCI‐converted group. Previous studies also out-

lined this potential trend by reporting agitation a precursor to future

AD development8,10,38,39 and a sign in MCI participants that would

correspond to an early AD diagnosis.40 Yet no specific link was re-

ported regarding appetite changes. However, these implications were

not significant when functional abilities were considered. This sug-

gests that in this sample of MCI participants, the SNPs are at least

partly explained by the reduction in functional abilities. Furthermore,

the involvement of other NPS has been reported: depression, anxiety,

apathy, irritability, psychotic symptoms. Though in our model these

NPS did not survive the significant threshold for the prevalence, nor

did they appear in the prediction model, they did show a non‐
significant up to double increase in prevalence. Whereas several

studies have been able to describe that the presence of NPS in CH

increased the risk of conversion to MCI 9.13–16, our results did not

show any difference between the CH‐converted group in comparison
to CH‐non‐converted.

Cognitively, our results show lower verbal mnesic performance

and semantic lexical evocation in MCI‐converted versus MCI‐non‐
converted. Interestingly, we do not find executive weaknesses in

MCI‐converted although these deficits are frequent in MCI in

relation to NPS (Rosenberg et al. 2011) as well as in AD.41 In

addition, mnesic difficulties occur much earlier than the diagnosis

of AD in comparison to executive difficulties.41 The CH‐converted
versus CH‐non‐converted showed worse verbal mnesic, working

T A B L E 2 Binary Logistic Regression
for the conversion from MCI to AD after
4 years

Variables Β Sig. Exp(B)

95%
Confidence

interval

Age −0.071 0.001 0.932 0.892 0.973

FAQ 0.084 0.012 1088 1019 1162

Free recall 1 of RAVLT −0.300 0.012 0.741 0.587 0.936

Free recall 5 of RAVLT −0.199 0.007 0.820 0.709 0.948

Temporal inferior gyrus right −2800 0.001 0.061 0.011 0.340

Hippocampus tail right −23,741,592 0.009 0.000 0.000 0.000

Amygdala accessory basal nucleus right −19,389,102 0.006 0.000 0.000 0.000

Constante 20,115 0.000 5,44E+8

Abbreviations: β, Coefficient from each significative variable; FAQ, Functional Abilities

Questionnaire; Sig., Significancy.

T A B L E 3 Psychometric characteristics for regression model of
the conversion from MCI to AD

Prediction

MCI To AD Correct prediction

Observed MCI 130 26 83.3(Spe.)

To AD 32 87 73.1(Sens.)

Accuracy 78.9

Positive predictive

value

76.99

Negative predictive

value

80.25

Yule Q coefficient 0.86

Abbreviations: Spe., Specificity; Sens., Sensitivity.
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memory and semantic lexical evocation performance. These per-

formances remains within the populational norms but they can

probably be cognitive fragilities and signs of a beginning of

cognitive decline, potentially in line with subjective cognitive

complaints, not objectified by the neuropsychological tests.42–44 As

such, only verbal memory performance remained significantly

involved in predicting conversion to AD and to MCI in our logistic

regression models.

Regarding this significant role of memory performance, this is in

line with the results of Baerresen et al. (2015).45 The use of this type

of model, with predictive purposes, is more frequent in recent years

and could be applied in individuals with non‐amnestic MCI,21 MCI

due to Parkinson's disease46 or even multiple sclerosis.47 Unfortu-

nately, these studies do not systematically mention the reliability

criteria of their models.

Concerning brain difference between MCI‐converted and MCI‐
non‐converted, brain characteristics were broader and involve

cortical structures of all lobes and subcortical regions of the hippo-

campus and amygdala. This suggests that diffuse cerebral frailties

may already be present at the MCI stage, prior to the diagnosis of

AD. However, only right temporal inferior, right hippocampus and

right amygdala remained significantly predictive of conversion in the

logistic regression model. Other studies have also shown cortical

thinning of several lobes in MCI participants and even more so in AD,

with a more important involvement of the left hemisphere.48,49 The

opposite asymmetry was found in our data.

When analyzing specific brain changes from the perspective of

involved NPS (agitation and appetite changes) and their potential to

influence the brain in MCI‐converted participants, previous studies

showed that agitation was characterized by insular, superior frontal,

middle, orbital, parieto‐occipital, hippocampal, and amygdala atro-

phies in MCI.50–52 Furthermore, these atrophies were broadly similar

between MCI and AD participants. Our data comparing the effect of

agitation in converters and non‐converters instead showed occipital,

cingulate, precentral, intraparietal, and temporal features. Note that

the impact of agitation in non‐converters was characterized mainly

by reductions in structure size, and by increases in size in converters.

This might suggest that the underlying physiological processes are

not the same (e.g., atrophy vs. compensation or inflammation). Ac-

cording to Bateman et al. (2020), pro‐inflammatory versus anti‐
inflammatory processes have respectively a positive and negative

correlation with agitation in AD. Since the increase in brain struc-

tures here is only observed in our converted group, we should look at

the age of the agitation.53 It could be assumed that in the converted

group, agitation is older and could have allowed the development of

inflammatory processes.

Interestingly, appetite changes seem more prevalent in MCI

converted in AD than in non‐converted but them were also not

retained by regression models as significant factor who predict the

conversion. Frequently, these behavioral changes are mainly associ-

ated with posterior structures. Particularly, them have been

described in participants with posterior cortical atrophy but associ-

ated with posterior structures also in typical AD,54 indicating that

posterior brain damage is not specific to these disorders. Overall,

these are understudied disorders and often dependent on other NPS

such as anxiety or depression.55,56 This makes these disorders more

complicated to study, especially on a neuroanatomical level.

In the CH to MCI conversion, the poorer performance in memory

suggested that the brain structures involved in memory would be

reduced in people who convert to MCI. However, the cortical and

subcortical structures involved appear to be broader and involved in

emotional (cingular, amygdala, frontal orbital), memory (temporal,

hippocampus) and multimodal functions (thalamus). According to

regression model, smaller volumes in the right hippocampus and the

left thalamus predicted better the conversion to MCI. Previous

studies that have looked at brain differences have focused on com-

parisons between CH individuals and individuals with MCI. These

T A B L E 4 Variables significantly
involved in predicting conversion from
CH to MCI after 4 years

Variables Β Sig. Exp(B)

95%
Confidence

interval

Age −0.153 0.027 0.858 0.750 0.982

Semantic lexical evocation « vegetables » −0.194 0.036 0.824 0.687 0.988

Hippocampus, subiculum body, right −50,786,249 0.011 0.000 0.000 0.000

Thalamus, pulvinar medial, left −18,793,242 0.001 0.000 0.000 0.000

Constante 30,892 0.000 2.608 E+13

Abbreviations: β, Coefficient from each significative variable; Sig., Significancy.

T A B L E 5 Psychometric characteristics for regression model of

the conversion from CH to MCI

Prediction

CH To MCI Correct prediction

Observed CH 169 1 99.4(Spe.)

To MCI 14 1 6.7(Sens.)

Accuracy 91.9

Positive predictive

value

50%

Negative predictive

value

92.35

Yule Q coefficient 0.85

Abbreviations: Spe., Specificity; Sens., Sensitivity.
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studies showed reductions in hippocampal, entorhinal and para-

hippocampal cortex volumes57,58 and were supported by other

studies showing cortical thinning in healthy participants with sub-

jective cognitive impairment compared to participants without, in

hippocampal, parahippocampal, amygdala, entorhinal, fusiform, pos-

terior cingulate, and inferior parietal regions.59–61 These reductions

may have been associated with poorer performance in verbal

memory.59

To our knowledge, most studies have focused on regions of in-

terest known to be involved in AD, whereas our study looked at the

entire cortex and subcortical structures. Furthermore, our results

may suggest brain changes that precede medial temporal damage,

which is usually considered as an anatomical precursor of cognitive

decline due to AD.

Because the risk of developing MCI was dependent on certain

demographic data, we chose to include them in the regression model,

whereas these variables were controlled in the ANCOVA model to

isolate differences related to cognitive performance and brain

structure size. Other analyses, on other databases, should also

consider the systematic presence of SMC in CH individuals, as well as

the presence of symptoms related to awareness of changes and dif-

ficulties (anosognosia and/or anosodiaphoria). Alternatively, if our

results do not show neuropsychiatric differences in CH‐converted,
this may suggest the existence of “subjective behavioral complaints”

that would precede the objectification of a mild behavioral disorder,

as described by Ismail et al. (2016, 2017), in analogy to the stages of

cognitive decline model.

This study should be viewed in light of several limitations. First,

in the AD conversion model, the duration of cognitive impairment

was not available in the extracted data. Due to this limitation, it

cannot be excluded that some MCI participants who converted to

AD, had the longest duration of impairment. Another limitation of

this study concerns the small proportion of CH individuals who

convert to MCI,63,64 correspondingly, this small sample cannot be

representative of this population limiting our understanding

regarding potential factors involved in conversion to MCI. Finally, our

model did not consider the socioeconomic aspect that may influence

NPS, such as marital status, residential patterns, accompanied

housemate, unemployment, or family income, as suggested by pre-

vious studies.62,65,66

The generalizability of our results refers to the possibility of its

implementation in a clinical setting and on an individual basis, in

order to calculate the predictive value of the risk of cognitive decline

after 4 years, especially in individuals with such complaints. After the

corresponding parameters are being quantified, the probability of

conversion can be calculated using the equation: P(event) = 1/(1

+e−[β1*X1+ β2*X2+ β3*X3+…+ βn*Xn+constant]). The regression tables

(Tables 2 and 4) provide the β coefficients of each significant variable
in the model and the X values are the individual‐specific values

quantified using corresponding tests and MRI data. For example, the

equation for conversion from MCI to AD after 4 years is P(AD) = 1/(1

+e−[‐0.071*X1+0.084*X2‐0.300*X3‐0.199*X4‐2 800*X5‐23,741,592*X6‐19,389,102*X7

+20,115]) where e = 271,828 (the base of natural logarithm), X1 = Age,

X2 = the FAQ score, X3 = the RAVLT first immediate recall score,

X4 = the RAVLT fifth immediate recall score, X5 = the right inferior

temporal gyrus thickness, X6 = the right hippocampal tail volume,

X7 = the right amygdala accessory basal nucleus volume and 20,115

is the model's constant. A 70‐year‐old individual with MCI, a FAQ

score of 10, RAVLT scores of 3 and 5, and structure values of 2.5,

0.0002, and 0.0001 would have a 60% probability of converting to

AD after 4 years (Odds Ratio = 1.50). The data obtained from the

calculation of each equation allows us to estimate, from the data of a

given individual, the percentage risk of conversion of this individual.

5 | CONCLUSION

Research on the preclinical stages of AD is frequent and focuses on

different diagnostic criteria and risk factors. As far as we know, our

study is one of the first to apply these types of models with MCI and

CH individuals using both neuropsychiatric, cognitive and neuro-

morphological data. We proposed to distinguish MCI and CH par-

ticipants who convert to AD and MCI, respectively, after 4 years of

follow‐up from the ADNI database. We were able to establish two

predictive models to distinguish participants evolving to a more se-

vere clinical stage. The conversion fromMCI to AD was characterized

by the presence of agitation, lower memory performance and smaller

volumes of inferior temporal, hippocampal and amygdala brain

structures, whereas the conversion from CH to MCI was character-

ized by lower performance on semantic evocation and smaller vol-

umes of hippocampal and thalamic brain structures. From a clinical

perspective, the construction of models with good psychometric

characteristics would allow to estimate, for an individual evaluated in

a clinical context, an objective probability of conversion and to

anticipate cognitive and brain declines thanks to cognitive, family or

social care and support.
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